MA 222 - ANALYSIS II: MEASURE AND INTEGRATION (JAN-APR, 2016)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore Problem Set 3

- 1. Let μ_n be the *L*-measure on \mathbb{R}^n , n > 1.
 - (a) Show that, $\mu_n(\mathbb{R}^k) = 0$ for all $1 \le k \le n 1$.
 - (b) Let $A = \{(x, y) \in \mathbb{R}^2 : xy = 1\}$. Show that $\mu_2(A) = 0$.
 - (c) Prove $\mu_3(S^2) = 0$, where S^2 in the unit sphere in \mathbb{R}^3 .
- 2. (a) Let $f:[0,\infty) \longrightarrow \mathbb{R}$ be uniformly continuous and integrable (i.e. $\int_0^\infty |f| < \infty$). Show that $\lim_{x \to \infty} f(x) = 0$.
 - (b) Show, by examples, that the result need not hold if we drop any one of the assumption.
- 3. Check for L-integrability and find the value of the integral whenever it is possible.
 - (a) $f(x) = \frac{1}{x^{\alpha}}$ on $(0,1), \alpha \in \mathbb{R}$
 - (b) $f(x) = \exp(-x)$ on $[0, \infty)$
 - (c) $f(x) = \exp(x)$ on $[0, \infty)$
 - (d) $f(x) = \frac{1}{x}\sin(\frac{1}{x})$
 - (e) $f(x) = \frac{x^{(n-1)}}{(1+x^2)^k}$ on $(0, \infty)$
- 4. Let f be R-integrable and g be L-integrable on (0,1). Further, $\int_0^1 |f-g| = 0$. Is g in R-integrable?
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a non-negative function. Define $\nu: \mathcal{M} \to \mathbb{R}$, where \mathcal{M} is the Lebesgue σ -algebra of measurable functions, by $\nu(E) = \int_{E} f$. Prove that ν is countably additive; that is if E_i 's are disjoint measurable sets, then $\nu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \nu(E_i)$. In other

words,
$$\int_{\bigcup_{i=1}^{\infty} E_i} f = \sum_{i=1}^{\infty} \int_{E_i} f.$$

- 6. (a) State and prove the generalized version of LDC.
 - (b) Give an example to show that LMC will not hold if the sequence is decreasing.
 - (c) Give an example to show that the strict inequality can hold in Fatou's lemma.
 - (d) Prove Fatou's lemma using bounded convergence theorem.
 - (e) Derive MCT from Fatou's lemma.
- 7. Let $f \geq 0$ be measurable and $\int f = 0$, then show that f = 0 a.e.
- 8. Let E be measurable. Show that

$$\lim_{\delta \to 0} \frac{\mu(E \cap (x - \delta, x + \delta))}{2\delta}$$

exists a.e. and equal to $\chi_E(x)$ a.e. (Hint: Use regularity for E and then Urysohn's lemma).

- 9. Let μ_1, μ_2 be L-measures on $\mathbb{R}^1, \mathbb{R}^2$ respectively.
 - (a) Let E be a measurable subset of \mathbb{R} and let $\sigma(E) = \{(x,y) \in \mathbb{R}^2 : x y \in E\}$. Show that $\sigma(E)$ is μ_2 -measurable.
 - (b) Let f be μ_1 -measurable on \mathbb{R} . Define $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ by F(x,y) = f(x-y) S.T. F is μ_2 -measurable.
 - (c) Let f,g be μ_1 -measurable. Show that the product $\phi(x,y)=f(x-y)g(y)$ is μ_2 -measurable.